An Inventor’s Guide to the Preservation, Protection, and Donation of Personal Papers

Send information on the following topics:

- Understanding the donation process
- Artifacts
- Preservation of materials
- Locating an appropriate repository
- Locating an appraiser
- Financial and tax implications
- Copyright/intellectual property rights

NAME

ADDRESS

CITY

STATE ZIP

PRESERVING CREATIVITY, INVENTION, AND INNOVATION
To ensure that the records of invention are preserved for the future, the Lemelson Center and the National Museum of American History Archives Center established the Modern Inventors Documentation (MIND) Program. Working directly with inventors, the MIND Program promotes the advancement and diffusion of knowledge about American inventors; acts as a clearinghouse for inventors seeking to preserve and donate their historical materials; identifies and preserves the papers and other historical materials of living inventors; promotes access to and use of this documentary record by scholars, students, and the public; and identifies inventors whose papers and artifacts have particular significance to the research and educational goals of the National Museum of American History.

The papers and artifacts of modern invention often are at risk. Geographic mobility, limited storage space, lack of knowledge about potential repositories, and busy schedules all make it easy to postpone dealing with non-current documents and files.

This guide describes the types of materials inventors may have, discusses why they are important, and explains how they can be preserved for future generations.

Victor L. Ochoa (ca. 1850–1945) with a prototype of his “Ochoaplane,” ca. 1908–11. He designed his plane with an automobile in mind, and it included collapsible wings so that it could be housed in a garage or barn. Ochoa also invented and patented a reversible motor, magnetic brake, rail magnetic brake, windmill, and wrench.
In December 1943, Grace Murray Hopper (1906–1992) joined the navy. Her first assignment was working with computers at Harvard University, developing codes into languages that could be read by the Mark I computer. In the late 1950s, she helped develop COBOL (Common Business-Oriented Language). Her other contributions to the computing field include work for Eckert-Mauchly Computer Corporation (UNIVAC I), Remington Rand, and the Digital Equipment Corporation. They earned her the nickname of “Amazing Grace.”

Hopper, who eventually became a rear admiral, retired in 1986. She donated her papers documenting her affiliation with the Harvard Computation Laboratory (1944–49) to the Smithsonian Institution's National Museum of American History in the late 1960s.
In 1990, 34-year-old Andy Butler and other Silicon Valley engineers patented a new level dependent on high-tech electronics to show digitally the precise angle of the surface being checked. The SmartLevel found a market among users of traditional levels who needed precise degree measurements. Butler and his colleagues were young, entrepreneurial visionaries who combined advanced engineering know-how with a humanistic approach to public interests and needs. Although SmartLevel never became one of Silicon Valley’s giants, it demonstrates that a small group of individuals can successfully field-test, manufacture, assemble, market, and sell a new product.

The SmartLevel materials were donated to the Smithsonian Institution by Andy Butler, inventor; Kevin Reeder, designer; and Brian Bayley, general manager of SmartTool Technologies. In addition to the archival records, the National Museum of American History acquired two SmartLevels in 1992 for its hand-tool collection.
MIND

THINKING ABOUT YOUR HISTORICAL RESOURCES

To assist inventors and their families in preserving the historical resources of invention, this checklist may be used as preparation for more detailed discussions with an archival repository. We urge you to act now while the materials are still intact.

What types of materials do you have?
- Artifacts/Objects—models, parts of inventions, prototypes, tools
- Company Records
- Computer Disks
- Correspondence—business, legal, personal
- Course Notes
- Diaries
- Drawings
- Financial Records
- Grant Applications
- Instructional Materials
- Laboratory Notebooks
- Logbooks
- Patents/Patent Applications
- Photographs
- Publications/Catalogs, Reports
- Sound Recordings
- Videotapes/Films

Are your materials in good physical condition?

Are your materials organized?

Do you have an inventory list?

What is the approximate time span of the materials?

What is the approximate size of your collection?

Where and how are the materials stored?

Harold E. Edgerton (1903–1990), an electrical engineer at the Massachusetts Institute of Technology (MIT), was interested in what happened when sudden change, like the surge caused by lightning striking power lines, reached an electric motor. By 1931, Edgerton had turned his experiments with motors and mercury-arc tubes into a commercial product that he called the stroboscope. It could measure the speed of machinery in motion and detect irregularities in a mechanism’s operation. Fortunately, his career is amply documented in laboratory notebooks, correspondence, oral-history interviews, artifacts, and more in the collections at MIT.

This incredibly rich resource exists primarily because of Edgerton’s own efforts. Planning with the museum and archives professionals at MIT, he made regular donations of materials. After his death, his family established a foundation that sponsored the full cataloging of Edgerton’s archival collection and turned over additional materials to both the museum and archives.
In 1937, Earl Silas Tupper (1907—1983), an aspiring Massachusetts inventor, took a job with Viscoloid, DuPont’s plastics division in Leominster, Massachusetts. He left in just a year to start his own plastics business, which prospered through World War II. After the war, Tupper experimented with polyethylene—a new material produced by DuPont—for use in injection molding. He also patented the airtight “Tupper Seal” for food containers. Together, these innovations laid the foundation for the success of Tupperware.

Earl Tupper’s children donated his papers to the Smithsonian Institution in 1992. His notebooks and diaries, correspondence, advertising material, and other records of his work on Tupperware attest to his ingenuity of a man who once referred to himself as a “ham inventor and Yankee trader.” The Tupper family also made a generous gift to assist in the care and preservation of the collection.

The Lemelson Center was established at the National Museum of American History in 1995 through a generous gift from The Lemelson Foundation, a private philanthropy, and named for its benefactors—Jerome and Dorothy Lemelson. Jerome Lemelson (1923—1997) earned more than 550 patents for a range of inventions, from toys to robotics, and his work was used in products such as the camcorder and cordless telephone.

The Center’s mission is to document, interpret, and disseminate information about invention and innovation, to encourage inventive creativity in young people, and to foster an appreciation of the central role invention and innovation play in the history of the United States.

For more information on the Lemelson Center and the Modern Inventors Documentation Program, contact:

The Lemelson Center
MIND Program
Smithsonian Institution
National Museum of American History
MRC 604, P.O. Box 37012
Washington, DC 20013-7012

© 2006 Smithsonian Institution